
Confluent Expansions* 
By Jerry L. Fields 

I. Introduttion and Summary. It is well known in special functions, see [1], 
that the confluent hypergeometric function is a limiting form of the Gaussian 
hypergeometric function, i.e. 

(1.1) LiMr2F (a b b)lF,(a z) 

or in series form, 

( 1.2) Li E (a)L a (b)k(zN 
Z 

____ e(+ 
b( =o (C)k k! b k=O (C)kk ( ! F(o) 

Note that if a = c, (1.2) reduces to the familiar limit, 

(1.3) Lim (1 - z/b) b= eZ. 
b-oo 

We will refer to the limit process in (1.2) as a confluence with respect to b. More 
generally, we will refer to any limit process of the form Limb, ZEh=o fk(b), as a 
confluence with respect to b, if the functions fk(b), up to a multiplicative constant 
dependent on k, are composed of a finite number of multiplicative factors of the form 
(?b +- l)k(b + W2) or their reciprocals, where w, and W2 are constants in- 
dependent of b and k. The value of the limit, if it exists, will be called the confluent 
limit with respect to b. The reference to b will occasionally be suppressed. As another 
example of a confluent limit in special functions, see [2], we quote the important 
classical relation between the Jacobi polynomials P,n") (z), and the Bessel functions 
JR(Z), 

?~~~~~~ Z 

or in hypergeometric form, 

Lim n(n + 1), F( n,n + a + + z 
Lim0 r(l + a) + a 4n2) 

= (l + a)V oF, 1+a - 4) 

In the situation where a confluence with respect to b is possible, it is of interest 
to consider what happens when b is large but finite. This leads in a natural way to 
expansions in inverse powers of b or a related variable. Such expansions may be 
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either analytic or asymptotic in nature, and will be referred to as analytic or asymp- 
totic confluent expansions respectively, with respect to b. In this paper, several 
canonical types of confluent expansions will be examined. 

For future reference, it is convenient to quote the following Tricomi and Erdelyi 
result [3]. 

THEOREM. If a and A are bounded quantities, 

P(Z ? a) ,, E (-1i)'((d - a)j B '-+1)(a) za-,-j 
(1.6) r(z + A) j=o j! 

z -*o, Iarg (z + a) I < (r , a > 0; Bo(a #+l)(a) = 1, 

where the Bj (a #+) (a) are the generalized Bernoulli polynomials defined by 

(1.7) (et 1) = ex q$B(P(x), Itt < 27w. 

We remark that if f- a is an integer _ 0, the asymptotic relation in (1.6) is 
exact, i.e., asymptotic equality (-) can be replaced by ordinary equality ( = ). 
MIoreover, if d - ais an integer > 0, I z I > Max a, a -1 },then the asymptotic 
relation in (1.6) is again exact. 

II. Analytic Confluent Expansions. In this section we generalize the confluent 
limits in (1.1) and (1.5). Our results are contained in 

THEOREM 1. Suppose for I z < RI, 
00 X0 

(2.1) Zakz < 0o; Zbzk < oo. 
k=O 

Then 

F(z, o) - ak 

(2.2) G(z, v, X) Z bk k!k!- + X (z+X 

k=~O lk!k! vv+X 

converge for I z I < I B- JR; I z I < I v(v + X) JR, and can be rearranged in descendling 
powers of o-; v(v + X), to yield the analytic confluent expansions, 

00 

(2.3) F(z,o) = E gj(z)o-j, IzloI < R; 
j=o 

(2.4) G(z, v, X) = Z hj(z, X)[-v(v + X)]-' Z < R 

in which the gj(z) are entire functions of z given explicitly by (2.7), and the hj(z, X) 
are polynomials in X of degree j, whose coefficients are entire functions of z, which ar e 
given implicitly by (2.10) and (2.13). For]j 1, gj(z) and h,(z, X) can be expressed in 
terms of the derivatives of go(z) and ho(z, X), respectively. 

Proof. From the ratio test and (2.1), it follows that F(z, a); G(z, v, X) converge 
for I z I < I o- JR; I z I < I v(v + X) IR. First we prove (2.3). It follows from (1.6) 
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with z = o-, d = 0, and a = k, together with certain generalized Bernoulli relation- 
ships in [4], that 

(2.5) (Kk -Ef (1 k)Bjk(o)J , k = 0,1, 2, 
Of j=0 3! 

Clearly the coefficient of o-j on the right of (2.5) is > 0, and F(z, o-) is majorized by 
the series 

(2.6) E (I a l)k z 
kIc ! CT 

which coniverges for I z I < I o- IR. Thus (2.5) can be substituted into the series 
definition of F(z, a) and the resulting series rearranged in powers of &-'. This leads 
to (2.3) with 

(2.7) gj(Z) = ak (1 - k)jBJk) (0) z 
k=O 2j!k! 

To express gj(z) in terms of the derivatives of go(z), we merely note that for fixed 
j, (1- k)jBj(k) (0) is a polynomial in k of degree 2j, aind that it can be written in 
factorial powers of k, e.g. ifj = 3, 

(1 - k)3B3(k)(0) 

(2.8) k (k - 1)(k -2)(k - 3) [( - 4)((k - 5) + 8((k - 4) + 12]. 

Substitution of this sort of factorization into (2.7) leads immediately to an ex- 
pression for gj(z) in terms of the derivatives of go(z). The first few of the gj(z) are 

00 

g(z) = go(z) = E (ak/lk!)zk, gl(z) = (z'12)g(2)(z) 
k=O 

(2.9) 92(Z) = (z3/3)g(3)(Z) + (Z4/8)g(4)(z), 

93(Z) = (z4/4)g g4(z) + (z'/6)g (5(z). 

We now prove (2.4). For v(v + X) # 0, k and j integers > 0, define the polynomials 
CJ,k(X) by 

( k (-V ))k(lV + X)k 

[V(V + X)]k 

k k 

= (1 - k/v)-'l (1 -j/v). (1 + k/(v + X))-' II (1 +ij/(v + )), 
(2.10)j=0 

j= 

(2.10) ( +~~ (kv( + X)) II (1 + + X 
Ic(c+ 1 (1 j( + x 

= + 
)(V ?)j \=. 

+ 
-)( 

k 

= E Ci,k(X)[(-V)(V + X)f'. 
j=0 

From (2.10), it is easy to see that Ci,k(X) is a polynomial in X of order j, whose co- 
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efficients are positive. Thus G(z, v, X) is majorized by the series 

lbiE lz | Cj,k(I X |) I V(V + x) | 
k=O k! k = 

(2.11) - IboI + __ IbiIIzIklof(i 1 ? 

Z k! k I j=O v(v + X)I/ 

which in turn is majorized by 

l 'l IbkIZ Ik kj (I + I vI)K I lv -Hli lbo k-i k!k! + ( lv(v-+X)l / 
(2.12) 

k1k !j0VV+X 

b ( I V | )k(|I V I + I X 
I|)k | k_ | | ( )|R (2.12) - ~~lbkl kt!i41 I) izI < lv(v ? X) INR. 

Thus G(z, v, X) can be rearranged in descending powers of v(v + X), and since v 
and X were arbitrary, 

(2.13) hj(z, x) = k bkC,(X)z 
k=O kc!k! 

is a polynomial in X of order j, which converges for arbitrary z. The final statement 
of the theorem follows as before. The CJ,k(X) can be defined recursively. Multiply- 
ing (2.10) through by (v - k)(v + X + k)[v(v + X)]-', one is led to the relation 

(2.14) Cj,k+l(X) - Ci,k(X) = k(k + X)Cj_l,k(X); k,j > 0. 

From (2.10) and (2.14), it follows that 

k-1 

(2.15) Cj+l,k(X) = E m(m + X)Cj,m(X), C0,m(X) = 1, m > 0. 
m=O 

Incorporating the same type of factorization as used to write gj(z) in terms of the 
derivatives of go(z), we have by explicit computation from (2.15) for the first few 
C; k(X), 

=o*() 1, 

C ) 
k_k l2(k 

- 1) x Cl,k(X) - 6 2 

C2,k(X)-k(k 
- 1) (k - 2) [20(k - 3) (k - 4) (k - 5) 

360 

(2.16) + 204(k - 3)(k - 4) + 495(k - 3) + 240] 

+ k(k - 1)((k - 2) [((k - 3)(k - 4) + 6(k - 4) + 63N 

+ kk ) 2 [ k3 +]6 

+ k(kc - 1) (k - 2) [3 (kc 3) + s]X2. 
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Substitution of (2.16) into (2.13) then yields for the first few hj(z, X), 

h(z) = ho(z, X) = E (bk/k! k!)zk, 
k-0 

(2.17) hl(z, X) = ((X + 1)/2)z2h(2"(z) + (z3/3)h"3)(z), 

h2(z,X) = ((X2 + 3X + 2)/3)z3h"3'(z) + ((X2 + 8X + 11)/8)z4h4"(z) 

+ ((5X + 17)/30)z6h(5"(z) + (z6/l8)h(')(z). 

This completes the proof of the theorem. 
Remark 1. The coefficients of the g(q'(z) in (2.9) are independent of the identity 

of the function go(z), and thus can be deduced from the special case when go(z) = eZ, 
i.e. 

(2.18) F(z, a) = (1 -z/a) F = e' exp{t (-))}. 

Similar remarks apply to the h(j)(z) in (2.17). 
Remark II. The characterization of gj(z); hj(z, X), given in (2.9); (2.17), is 

particularly convenient when working with generalized hypergeometric functionls, 
since for m, p, q, integers > 0, p < q + 1, 

dpFq (x I I I az) 
dzm P O ,f3q/ 

(2.19) 

11(t j )^ / I (0j) )". pFq (m + a,,' m + ap z 

Remark III. If bk = k! ak , the functions F and G are related by a confluenice 
limit, i.e. 

(2.20) Lim G(z, v, X) = F(z, -v). 

Remark IV. If-a = v = n, an integer > 0, then F(z, -n) and G(z, n, X) are 
polynomials in z of degree n. Moreover, if the hypothesis (2.1) of Theorem 1 is 
replaced by the weaker hypothesis that for I z I < R*, 

(2.21) Z-o?k < ; kE zk < 
k-0Ok! k-o k! k 

then the gj(z); hj(z, X), which are Inow only defined for I z I < R*, are the Poincar6 
coefficients of F(z, -n); G(z, n, X) as n -k o. As is indicated by Remark III anid 
the proof of Theorem 1, the proof of this fact for F(z - n) is similar to, but simpler 
than, the proof of the corresponding fact for G(z, n, X). The result for G(z, n, X) 
follows readily from the following 

LEMMA 1. Suppose rn an integer 0, and k, n integers such that 1 < k < n. Then 
for n sufficiently large, the Cj,k(X) defined by (2.10) satisfy the inequality, 

(n !) 1)( -n)k(n + X)k 
" 
rn-I + A)] 

[n (n + X)]Ik 0 

(2.22) InCn + X) mlk 2(k + )- <CA 

X=a+ i:; a,+ real; t= Max 10,-a(31 a I + 21 d 1)/41. 



194 JERRY L. FIELDS 

To prove (2.22), it is sufficient to notice that for n sufficiently large, 

(2.23) M'viax 1 t( + x) =)' 
O<u<1O0<t?<n n(n + X)n(n + a 

and hence by direct computation, that 

Mlax I Hk(m)( -u[n(n + ) 

(2.24) ? k2m(k + I X I)-(l + 4[n(n + a)]-'l)n < k27 (k + X 
, 

k-1 

Hk(x) = l[1-+-j(j+X)x]. 

Combining (2.24) with Taylor's theorem, one arrives at (2.22). 

III. Asymptotic Confluent Expansions. Here we give two canonical examples 
of asymptotic confluent expansions. Our first result is contained in 

THEOREM 2. Suppose for I z I < R, 
00 

(3.1) I: CkZ < 0o. 
k=O 

Then 

(3.2) T(z, p) = Ck 
(pz)k, 

k=O (1p)k 

converges for all z, p 5 0, - 1, I, and possesses the asynptotic confluent expansion 
cc 

T(z, p) , fj_(z) -) j=0 

(3.3) p -> 0o argp jo < 7r -6, 0 < < 7r/2, zrp < R; 

rp=1 if I arg p I _ 7r/2, 

= sin (arg p) j1 if 7r/2 < arg p < 7r- 

in which the fj(z) are functions analytic in I z I < R given explicitly by (3.8). Moreover, 
forj > 1, fj(z) can be expressed in ten-ns of the derivatives of fo(z). 

Proof. From the ratio test, it follows that T(z, p) converges under the stated 
conditions. Next we note that (1.6) with z = p, a = 0, f = k, reduces to 

k = 
Zj,k Bj k = 

(1)(k)j B 1-) (0) 
(P)k j=0 

j! 

Before computing the Poincare coefficients of T(z, p), we need the following 
LEMMA 2. Suppose n an integer > 0, and k an integer > 1. Then for p sufficiently 

large, the Oj,k defined by (3.4) satisfy the inequality, 
k n-1 

P- _ 3 Oj p-j I p Iln(,p)l-n-kk-2n 1, 

(3.5) (P)k j=O 

I arg p I _ 7r-, < 6 < 7r/2. 
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Proof. If I arg p ? < 7r and ju > 0, then 

(3.6) Ii +ju' I-' < r. 

It follows by an induction proof on n, that 

Max i Fkn) (Up1) I < (n!)(rp) k?nlk 2n, n = 0, 1, **, 
0o u_1 

(3.7) k-1 

Fk(x) = 11(1 + jx)-, k = 1, 2, 

Eq. (3.7) combined with Taylor's theorem, yields (3.5) and completes the lemma. 
Now set 

0" 00 
~~~(k) iBy (1)(0)k (3.8) fj(z) E Ck( 1)fj,kz = E Ck z 0, 1, 

k=O k=O j! 

Clearly, for fixed j, the coefficient of CkZk in (3.8) is a polynomial in k of degree (2j). 
Thus the functionsfj(z) are analytic in I z I < R. We now show that the (-1) jfj(z) 
are the Poincar6 coefficients of T(z, p) at p = oo, i.e. for arg p fixed, I arg p _ 7r -, 

n-1 

Lim ( -p) nT(z, p) -E fj(z) (-p)- 
P-*00 _j=o 

00 k n-1 Co + E Ck Z Lim (-p) p E kP'j 
(3.9) r(1 - n) k=1 p- O (P)k j=O 

co + Z Ck O,k(-1)nZk r(1 - n) k=1 

= fn(z). 

The interchange of limit processes in (3.9) follows from the fact that, in view of the 
lemma, the original series in (3.9) is majorized by the series 

(3.10) | co | + ( _rp I k Ck | zrp 
r7(1 - n)+ =r1~ 

which converges for I zrp I < R. Note that since rp is a function of arg p only, the 
convergence is uniform in p on the ray t exp (i arg p), I p I _ t < oo, I arg p ? _ r -8. 
Finally, the representation of fj(z) in terms of the derivatives of fo(z) follows as in 
Theorem 1, and the first few are, 

( f(z) fo(z) = 
k 
, f(Z) = (Z2/2)f(2)(Z) 

(3.11 ) k=O 

f2(Z) (Z2 /2)(2)f(Z) + (2z3/3)f(3)(z) + (z4/8)f(4)(Z), 

which completes the proof of the theorem. 
As a final canonical example of a confluent situation, we prove the following 
THEOREM 3. Suppose for I Z I < R) 

00 

(3.12) v(z) = Zdkzk < 0o 
k=O 
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Then 

(3.13) S(z, u, a, b) = Z (+ za 
k=O ( + b)k 

converges for I z I < R, o- + b $ 0, -1, * , and can be rearranged in the region 
I z I < R/2, to yield the expansion 

00 
(b - )(- ) ()() (3.14) S(z, a, a, b) = E (u +b)(!v 

If a and b are bounded quantities (3.14) holds asymptotically in the larger region 
I z I < R, i.e., if n is an integer > 0, 

S(z, a a, b) = 
E (b -)i() - ) vp'j(z) + O(o-n), 

(3.15) ,=o ( + b)j i1 

f o-* , arg ( + b) 7r -8, 6 >, l z I < R. 

If [(o- + b)j]-' is expanded in powers of -F (3.15) can be written as an asymptotic 
confluent expansion in a-1. 

Proof. From the ratio test, it follows that S(z, o-, a, b) converges under the stated 
conditions. One sees from Gauss's formula for a 2F1 of unit argument, [1], that if 

-+ b O,-1, * *, 

(3.16) E (- )+( b)-j F(k ba = (a- + ab)k k =O,1,*. 

Assume that I z I < zo < R. Then dk = O(zo k) uniformly in k, as k -o. Thus the 

right-hand side of (3.14) up to a multiplicative constant is majorized by 

00(b - a)j _ z - 1)( 1) k 

(3.17) =o| (a- + b)j j! k=E ( |Z 
00 

(b~ - /)j Z 
= (1-_ z/zo) E |(b+ -? 

,=o (a + b)j z 

which converges for I z I < I zo 1/2. Thus the right hand side of (3.14) can be arranged 
in powers of z, establishing (3.14). To prove the asymptotic expansion (3.15), we 
merely remark that the same methods used in Theorem 3 can be used to establish 
the existence of a Poincar6 asymptotic expansion of S(z, a-, a, b) in powers of a -', 
under the stated conditions of the theorem. In the common region I z I < R/2, 
both the asymptotic expansion in o-f1 and (3.15) must agree when [(a- + b)j7-1 is 
expanded in powers of a-1. This is sufficient to identify the Poincar6 coefficients, 
and establish (3.15). This completes the proof of the theorem. 

Remark V. The region I z I < R/2 is, in general, the largest circular region in 
which the right-hand side of (3.14) can converge. This follows from the special case 
of Theorem 3, known as Euler's formula, see [1], 

(1F (a + a, a |= (b - a)j(- z)id' {d ( 1-z)-} 

(3.18) 
o- + b (- )- F b -a j! dz) 

= (1- Z 2F(b-a, a z 
= (1~Z<~x2Fi a+ b z +1J 
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In this example, R = 1, but the right-hand side of (3.18) converges only for 
Re (z) < 2. Also note in this example that the right-hand side of (3.18) analytically 
continues the left-hand side of (3.18) outside its original circle of convergence, i.e. 
the unit circle. 

Remark VI. In the special case S(z, o, a, b) is a hypergeometric series, (3.14) 
yields a proof of the fact that whenever a convergent hypergeometric series has a 
numerator parameter differing from a denominator parameter by a positive in- 
teger m, that the hypergeometric series can be written as the sum of m hypergeo- 
metric series of lower order. Although there are many examples of such formulae in 
the literature, this result seems never to have been proved in general. 
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